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Abstract: Many problems existing in control theory can be effectively solved using Linear Matrix 
Inequalities (LMIs). Solutions of these inequalities are obtained utilizing semi-definite programming as a 
generalization of the linear programming. In this paper we consider the problem of stabilizing multivariable 
state feedback controllers, which stabilize the satellite system. First quadratic stability problem via 
introducing Lyapunov functions is considered. Then using LMIs bounded energy problem is considered and 
finally quadratic H∞ control ensuring closed loop performance γ is realised. Stability and performance 
specifications are transformed in terms of LMIs. Numerical examples are also presented. 
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1. Introduction 
The satellite system is a popular laboratory tool 
serving as a benchmark for testing linear and 
nonlinear control techniques. It is a 
electromechanical device having complex 
dynamic behaviour. The satellite system is 
adapted from [1] system can be used as an 
impressive demonstration tool for missile 
stabilization problems. The system is a satellite 
consisting of  two rigid bodies (main body and 
instrumentation module) joined by a flexible 
link (the “boom”). The boom is modeled as a 
spring with torque constant and viscous 
damping. 
The goal of this paper is to derive stabilizing 
multivariable state feedback controllers using 
the LMI technique. First quadratic stability via 
introducing Lyapunov functions has to be 
analyzed. Then bounded energy problem has to 
be considered and finally quadratic H∞ control 
ensuring closed loop performance γ has to be 
realized. Stability and performance 
specifications have to be transformed in terms 
of LMIs. 
 The effectiveness of LMI approach remains 
valuable for several reasons. To begin with it is 
applicable to all plants without restrictions on 
infinite or pure imaginary invariant zeros. In 
addition LMI based design is practical and 
interesting thanks to the availability of efficient 
convex optimization algorithms [2] and 

software [3] plus the MATLAB package 
Yalmip and SeDuMi solver [4]. 
The remainder of the paper is organized as 
follows. In Section 2 we shortly present the 
problem set up and objective. Section 3 
describes the LMI based approach to design 
multivariable state-feedback controllers. Section 
4 presents some numerical examples before we 
conclude in Section 5 with some final remarks. 

  
2. Problem Set up and Objective 
2.1 Satellite System 
Consider the free body diagram of the satellite 
system, shown on Figure 1. The considered 
dynamical system is of forth order with state 
variables as follows: yaw angle for the main 
body - 

1θ and yaw angle for the sensor module - 

2θ , angular velocity for the main body - 
1θ , and 

the corresponding angular velocity for the 
sensor module - 

2θ . The input signal is T - the 
control torque, k - torque constant, f - viscous 
damping. The numerical values of the 
parameters are given in Table1. 
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Fig.1: Satellite system 
 
 
 
The state space model of the system by 
choosing the state variables 
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2.2 LMI based control 
The considered satellite system is unstable. That 
is why in this paper we design stabilizing 
multivariable state feedback controllers using 
the LMI technique. In the beginning quadratic 
stability via introducing Lyapunov function has 
to be analyzed. Then bounded energy problem 
has to be solved in order to ensure optimal 
control of the considered system and finally 
quadratic H∞ control ensuring closed loop 
performance γ has to be realized. Stability and 
performance specifications have to be 
transformed in terms of LMIs. The objective of 
the paper is also connected with showing 
efficiency and effectiveness of the LMI based 
control. More information about LMI based 
techniques can be obtained in [5, 6, 7]. 
 
3. LMI based state – feedback control 
3.1 LMI based quadratic stability problem 

In this subsection we use the LMI technique to 
design a multivariable state-feedback controller 
in order to ensure quadratic stability. This 
means that every state trajectory should 
converge to 0 as time goes to infinity. 

For linear time-invariant systems (LTI) given in 
state-space form – open loop system 

                  x Ax Bu= +                     (1) 

it is necessary to find a state-feedback matrix K  
such that system (1) should be stable. The 
control input is chosen as u=Kx then the closed 
loop system is obtained 

 ( )x A BK x= +  .        (2) 

To make the LTI system stable it is necessary to 
use a quadratic Lyapunov function 

                       (3) ( ) , 0,T TV x x Px P P P= > =

such that             

( ) [( ) ( )] 0T T T Td V x x Px x Px x A BK P P A BK x
dt

= + = + + + < (4) 

In order to ensure quadratic stability of the 
system (1) the following system of inequalities 
has to be solved 

( ) ( ) 0,TA BK P P A BK P 0.+ + + < >         (5) 

The system of inequalities is nonlinear with 
respect to the unknowns P and K that is why we 
perform linearizing change of variables 
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Finally we multiply on left and right the last 
inequality with Q to obtain a system of LMIs 
with respect to Q and Y  

 

      0, 0.T T TAQ QA Y B BY Q+ + + < >          (6) 

3.2 LMI based bounded energy problem 
For the open loop LTI system  

                   
,
,

x Ax Bu
y Cx Du
= +
= +

                        (7) 



the bounded problem means to find a control 
law which minimizes the output energy for a 
given initial condition x(0)  

0
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The control input is chosen as u=Kx then the 
closed loop system is obtained 
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To make the LTI system stable using bounded 
energy problem it is necessary to use a quadratic 
Lyapunov function   such that ( ) , 0TV x x Px P= >
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Finally to realize the LMI based bounded 
energy problem one should solve the following 
system of inequalities 

[( ) ( )] , 0.T T Tx A BK P P A BK x y y P+ + + ≤ − >  (9) 

This system of inequalities is nonlinear with 
respect to the unknowns P and K that is why we 
perform linearizing change of variables to 
obtain  

( ) ( ) 0,T T T TAQ QA BY Y B CQ DY CQ DY Q+ + + + + + ≤ > .   (10) 

Since the upper LMI is still nonlinear with 
respect to Q and Y  we have to use the Schur 
complement argument [8] to obtain the 
following system of LMIs  
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3.3 LMI based quadratic H∞ performance 
problem 
From [6] we know that the LTI system (7) is 
asymptotically stable if the following statements 
are true: 

• ( ) ,G s γ
∞
<               (12a) 

• for every input signal u and initial 
condition x(0)=0 
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• there exists a solution of the following 
LMIs 
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It is necessary to obtain a quadratic Lyapunov 
function  and a scalar ( ) TV x x Px= 0γ >  such 
that for every t the following inequality holds 
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If we integrate from 0 till T for x(0)=0  we 
obtain 
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The expression (13) can be represented as (12c) 
according to [5], which is actually the 
Eigenvalue Problem with respect to the 
variables P and γ.  

To obtain quadratic H∞ performance it is also 
necessary to ensure that (12a) holds. The 
transfer function matrix of system (7) is given 
by the expression 

1( ) ( ) .G s C sI A D−= − +  

And the H∞ norm is defined as 
max( ) sup ( ( )).
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open loop system (7) with D=0  we would like 
to design a controller K such that for the 
corresponding closed loop system quadratic 
stability and performance γ has to be ensured 
using the LMI approach. Using the Schur 
complement argument expressions (13) and 



(12c) are represented via the following 
inequality with unknowns K, P and γ 
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Unfortunately the upper inequality is nonlinear 
with respect to the variables K and P so a 
linearizing change has to be performed. This 
will help us obtain the LMI system suitable for 
calculating a controller K such that for the 
considered closed loop system quadratic 
stability and performance γ can be ensured 
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4. Numerical Examples 

Consider the satellite system given in state - 
space model – A, B, C, D – Section 2. The open 
loop system is unstable since the eigen values of 
matrix A are -0.0000, -0.0219 + 0.6997i,  -
0.0219 - 0.6997i, 0. In Fig. 2 is shown the time 
response of the open loop system 

 

 
Fig.2: Time response of the open loop system 

 
4.1 LMI based quadratic stability problem 
 
Using inequality (6) and applying MATLAB 
package Yalmip and SeDuMi solver the 
controller matrix  

 
K=YQ-1=[-1.6616   -0.1922   -1.1288   -1.6594] 
 
can be obtained. The closed loop system is then 
stable since the eigenvalues of A-BK  are 
 

-0.4425 + 1.2221i, -0.4425 - 1.2221i 
-0.1438 + 0.4982i, -0.1438 - 0.4982i. 

 
Fig. 3 shows the time response of the closed 
loop system with K. 

 
Fig.3: Time response of the closed loop system with K 

 
4.2 LMI based bounded energy problem 
Using inequality (11) and applying MATLAB 
package Yalmip and SeDuMi solver the 
controller matrix  
 
K_bep=Y_bepQ-1_bep=[-4.6753 -1.1800 -
1.8739   -7.7270] 
 
can be obtained. The closed loop system is then 
stable since the eigenvalues of A-BK_bep  are  
 

-0.7303 + 1.9614i,  -0.7303 - 1.9614i 
-0.2285 + 0.5247i,  -0.2285 - 0.5247i. 

 
Fig. 4 shows the time response of the closed 
loop system with K_bep. 

 



5. Conclusions 

 

 
This paper considers the problem of designing 
stabilizing multivariable state feedback 
controllers for the satellite system using the 
LMI technique. Applying Lyapunov functions 
quadratic stability is assured. Then bounded 
energy problem is solved and finally quadratic 
H∞ control ensuring closed loop performance γ 
is realized. Stability and performance 
specifications are transformed in terms of LMIs. 
Based on these results we have presented 
numerical examples to explicitly reveal the 
performance and applicability of the LMI 
approach to design multivariable state-feedback 
controllers for LTI systems. 

Fig.4: Time response of the closed loop system with K_bep. 

 
4.3 LMI based quadratic H∞ performance 
problem 

  
Using inequality (15) and applying MATLAB 
package Yalmip and SeDuMi solver the 
controller matrix  
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